
172114203 & 152113001 

Strategy game built on Unity3D 
Lightweight Render Pipeline that 
supports mobile and computer 

platforms with Mirror Networking Asset 
based multiplayer and an Artificial 

Intelligence with MiniMax Algorithm. 

Duzce University 2020 Summer Thesis Project 

 
Özgür Özbek & Atilla Çoruhlu 

20.08.2020 

 

Abstract 

Purpose of this article is to provide an insight on both common and uncommon problems 

encountered by the engineering end with LWRP, Mirror and MiniMax algorithm and how to 

approach the problem to solve it efficiently. This also mentions some optimizations regarding 

those topics. Since this is a thesis project, detailed instructions on how to achieve these 

problems are mentioned. Topics reviewed will have a clear indication of separation with titles 

and subtitles. Sources can be found under references. They mention how to use or achieve a 

state while this article points out how we used them and what we encountered. Every code 

block shown is not intended to be used as is for you, and the software is licensed under the MIT 

License. 

Keywords: Unity, Render Pipeline, MiniMax, Artificial Intelligence, Mirror, Tic Tac Toe 

Explaining how to solve various problems encountered by using the current game development 
technologies mentioned in the thesis project to make a multiplayer game. 



1 
 

 

T.C. DUZCE UNIVERSITY FACULTY OF TECHNOLOGY 

COMPUTER ENGINEERING DEPARTMENT 
 

Strategy game built on Unity3D Lightweight Render Pipeline that supports 
mobile and computer platforms with Mirror Networking Asset based 

multiplayer and an Artificial Intelligence with MiniMax Algorithm. 
 

This project prepared by Ozgur Ozbek and Atilla Coruhlu has been accepted by the following 
jury as the Bachelor’s Degree Graduate Thesis in Duzce University Faculty of Technology 
Computer Engineering Department. 
 
Thesis Advisor 
Prof. Dr. Ibrahim Yucedag 
Duzce University 
 
 
Jury Members 
 
 
 
 
Duzce University _____________________ 
 
 
 
 
Duzce University _____________________ 
 
 
 
 
Duzce University _____________________ 
 
 
 
 
Thesis Defense Date: 14.09.2020 
 



2 
 

 

Statement 

This thesis study is our own work, we did not behave unethically in any stages from the 
planning stage to the release. We have obtained all information in this thesis within academic 
and ethical rules. We have cited all the information and comments obtained from outside this 
thesis. Their sources on the time of writing are included in the list of references. We did not 
violate patent and copyright rights during the study and writing of this thesis. 

September 14th, 2020 

Ozgur Ozbek 

Atilla Coruhlu  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

Thanks 

Many thanks to our professors Prof. Dr. Ibrahim Yucedag, Dr. Metin Toz, AP. Ali Calhan and      
AP. Serdar Birogul. Thanks to their expertise on artificial intelligence, optimization, networking 
and programming skills, we think we came up with the best approaches to certain problems. 

Thanks to the people who have always supported us during these times, our families and 
friends, Emine & Faruk Ozbek, Ayse & Kemal Coruhlu, Aleyna Selale Seker, Kubra Nur Cin, Umut 
Demiray, Efe Bozoklu, Arda Arinkal and Mustafa Meral. 

September 14th, 2020 

Ozgur Ozbek 

Atilla Coruhlu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 

Table Of Contents 

Tools Used And Their Explanations 5 
Unity3D 5 
Visual Studio Code & Monospace 5 
Adobe Illustrator 5 
Lightweight Render Pipeline 5 
MiniMax Algorithm 5 
Software 5 
Game Theory 5 
Unity Asset Store 5 
Reaper, Kontakt, Audacity & BoscaCeoil 5 
GitHub 5 
Scenes And Their Explanations 6 
Menu Scene 6 
Tutorial Scene 6 
Info Scene 6 
Offline Scene 6 
Online Scene 7 
Game Scene 7 
Scene Transitions 7 
Logic And Rules 7 
Logic 8 
Logic Gaps 8 
Answers To These Gaps 8 
Rules 9 
Pre-Development Phase 10 
Multiplayer Development Phase 10 
Data Types And Synchronization 11 
Authentication 11 
Race Condition 11 
Nagle’s Algorithm 12 
Beyond Multiplayer 12 
Asset Creation 12 
Font 12 
Music 12 
Singleplayer Gameplay 13 
MiniMax Algorithm 13 
Table Optimization Problem 13 
Combo Scoring Problem 14 
Emotional Behaviour Problem 15 
Key Scripts 15 
GameMaster.cs 15 
Button.cs 17 
AudioManager.cs 18 
MiniMax.cs 18 
TableMaterialController.cs 19 
PlayerPrefs And Other 19 
Flow Diagrams 20 
License 23 
Bibliography 24 

 



5 
 

 

Tools Used And Their Explanations 

We mention what we used and how we 

used them here. Tools that are not required 

but used like Unity Hub, Github Desktop 

and Trello are not mentioned. 

Unity3D 

Unity3D is a game engine. It includes things 

that are required to make a game such as 

audio drivers, multiplatform compilers, 

rendering etc. 

Visual Studio Code & Monospace 

It is used to integrate our code to Unity3D 

while including quality of life tools for 

programming like Linter, Parser and, Error 

Handling methods. 

Adobe Illustrator 

It is a designer software we used to make 

almost every two dimensional asset such as 

buttons and icons or texture assets like tiles 

and buttons that are used in the game. 

Lightweight Render Pipeline 

It is a render pipeline that is already 

optimized to run better on both CPUs and 

GPUs. It is integrated on Unity3D. We used 

it to render the board, particles and any 

other material used. We have used tools 

like the PostProcessing Stack, Shaders and 

Shader Graph. Shader Graph and its nodes 

allow us to use many rendering effects with 

customization. 

MiniMax Algorithm 

This is an algorithm that tries to get the 

highest possible score within the current 

node while iterating recursively. This is used 

when a single player hosts a game to play. 

When there are no opponents, the artificial 

intelligence will play to provide a satisfying 

session. Currently it only thinks ahead for 

three turns because we wanted it to move 

fast and be beatable. 

Software 

We used C# to communicate with Unity3D, 

Markdown for documentation, C# and 

Python for the artificial intelligence, C++ for 

socket programming, NodeJS for server 

client relations  and, Git for version control.  

Game Theory 

In order to make many competitive 

decisions during the development phase, 

mathematical formulas proposed by John F. 

Nash were used to help make rational 

decisions. 

Unity Asset Store 

Used to include packages like Mirror into 

our project. 

Reaper, Kontakt, Audacity & BoscaCeoil 

It was used when doing sound engineering 

for in-game music, orchestration, sound 

effects and more. 

GitHub 

Used to version control. We also had to 

modify how Unity3D stores metadata and 

how it saves files to be able to track the 

project with Git. 

Being able to pull and push individually let 

us work on the same project simultaneously. 

 



6 
 

 

Scenes And Their Explanations 

These are the screens displayed by Unity3D 

and they show the output or help us 

navigate through. Every information is 

provided and game logic runs under these 

scenes. 

Menu Scene 

This is the first scene we encounter when 

we run the game. This scene has the option 

to mute and unmute the sound, buttons to 

play, to see the tutorial and to exit. Menu 

Scene also displays the version and the title. 

 

We can change how the game table looks 

by clicking the “easter egg” button and see 

the info scene by clicking the info button.  

Tutorial Scene 

 

This scene displays the achieved rules 

mentioned under the “Logic And Rules” 

section. 

Info Scene 

 

This scene displays the credits information. 

The information includes content under 

titles developers, testers and information 

providers. It also has a disclaimer to 

indicate that this is a thesis project. 

Offline Scene 

 

This scene allows us to Host a Server+ Client 

network connection. We can play with 

others on localhost if our firewall is not 

blocking this process or play with others 

online if our 7777 port is open. 

Client button also lets us to join others. 

Others in this context is indicated by the 

Input Field. On this picture, it is localhost. 

If nobody joins the host, the host can still 

start the game and play against the artificial 

intelligence. 

We use Mirror to provide networking needs. 



7 
 

 

Online Scene 

 

This scene displays the information for the 

room such as the NAT Port, Client Address 

and network transport type. Host can 

choose to terminate this host session aswell. 

We also see a lobby. This lobby only takes 

up to two players since the game can only 

be played by two players. Players can ready 

up and the host can start the game is 

everyone is ready. 

 

We can also kick other players if needed. 

Game Scene 

 

This is the game scene. Every game related 

logic is being run under this scene. Score, 

Buttons, Moves, Game Commands, 

Networking Commands, Client Remote 

Procedure Calls, Hooks and SyncVars run 

here. 

Mainly, two players can play against each 

other. Host will always go first. Score is 

indicated aswell. 

If there are no players, MiniMax will act as a 

player and play instead. 

Scene Transitions 

We wanted a visual feedback while 

changing scenes. Simply, fading in and out 

solves this problem. 

We have used the Animator embedded in 

Unity3D. In a canvas, we faded by changing 

an image’s alpha value. Due to performance 

concerns, we instead decided to work with 

a code. This also helped us to include this 

transition on multiple instances. 

We got rid of the animator and ended up 

with a one liner that allows us to transition 

between scenes. 

Logic And Rules 

Firstly, information about Tic-Tac-Toe has to 

be given. This game is played on a three by 

three board, usually with a pen and paper. 

Player scoring by aligning three of their 

pieces either diagonally, horizontally or 

vertically, wins the game.  



8 
 

 

X goes first, then the game will continue 

with O. X being the first player, O being the 

second. Maximum amounts of moves is 9 

and is as follows. 

X,O,X,O,X,O,X,O,X 

Although, the game will end if one of the 

players score. Unlike the regular Tic-Tac-Toe, 

on XOOOX, we placed four boards on top of 

each other. This was inspired from 4D Chess. 

Thanks to this, there is more replayability 

and strategy. With the artificial intelligence, 

even without a friend, you can still play so 

there are very little problems while looking 

for companions. 

Logic 

The game is played on a five by five field. 

Middle square represents a corner for all 

four tables. Even though we see a five by 

five area, it is actually an overlapping 6 by 6 

area that has four three by three area. 

For user experience, we color-coded the 

table. For overlapping squares, we have a 

shader effect that transitions between two 

adjacent table colors. White representing 

the middle square is unique, since it is the 

only tile that every table has access to. That 

is why it is white. 

White is rgb(255,255,255) 

Since some versions of Unity3D differ 

between the methods for their shaders, we 

kept all effects such as transitions and 

emissions compact as possible in render 

pipeline. 

 

Aside from all that, contrary to common Tic-

Tac-Toe, our game does not end when a 

player scores. The player with most combos 

wins. 

Logic Gaps 

There are four gaps that need to be 

addressed immediately. 

1) What is the value of a combined square? 

2) How do we decrease the amount of ties? 

3) How to even out the advantage from 

going first? 

4) We don’t want odd combinations like; 

red middle + white + blue middle 

to score, so how do we divide the five by 

five table to four three by three tables in 

code? 

Answers To These Gaps 

These issues need to be answered to as 

simply and clearly as possible. 

We do not want to provide complex 

solutions and take away from the fun 

aspect. 



9 
 

 

1) As you can see in the following image,  

even though X’s have two scoring combos, 

since one of them is on a combined area it 

scores from both the tables. This situation 

increases the amount of ties. 

2) Tic-Tac-Toe has a fame of ending in a tie, 

and a tie is not as fun as winning -or even 

losing-. To decrease this amount, we have 

already got rid of the “score once to win” 

rule. Now, we are going to check the 

amount of tiles we gained score from. If the 

scores for players equals, we are going to 

count the tiles.  

As you saw before, X and O both have the 

score of 3. But, with this new rule, X has 5 

tiles it gained score from while O has 9. 

Therefore, O is rendered as the winner.  

3) Since X has a massive advantage, we 

need to give a chance to O. 

Middle square according to our MiniMax 

table has the score of 12 while the next 

highest score is 6. This means that we can 

just simply give O two turns to equally 

handle the advantage problem. This way, O 

can also have the advantage of having 

played tiles on all tables, also rendering X’s 

advantage of going first to none. 

 

MiniMax Table 

4) We have already provided a visual 

solution for the table organisation problem. 

We calculate every table seperately in code 

in different arrays. This makes us calculate 

the combined fields more than one but also 

prevents code repetition. Calculating 

combined areas twice also acts as an 

attention grab, deepening strategy. 

Rules 

According to everything mentioned above, 

our rules follows: 

 Played with two players. 

 X goes first. 

 O goes twice on the second round. 

 Combined areas of three by three tables 

score double. 

 When a player scores, the game does 

not end. 

 When all twenty-five squares are played, 

game ends. Player with the higher score 

wins. 

 If scores are equal to eachother, player 

with the most scoring tiles wins. 

 If scores are still tied, it is a tie. 



10 
 

 

Pre-Development Phase 

Every asset shown in earlier screenshots are 

made by us inside Unity3D or with Adobe 

Illustrator. For tiles, X and O we used 

MSPaint and LWRP’s Emission settings. 

These emission settings are derived from a 

PBRGraph. 

After all visuals and drawings are in line 

with the gameplan, we began programming 

the main logic. At this state, we used four 

different multi-dimensional arrays to store 

the data for all our tables. This way, we 

could track score easily. If we were to  

calculate this with a five by five array, it 

would both be slower and hard-code heavy. 

 

Image you see has additional shadowing 

because every vector drawing we need to 

use in game has to be white because we 

handle all coloring and texturing from our 

shader graphs. Emission, HDR Coloring, 

Light Bouncing should be provided by the 

lightweight render pipeline. This way, every 

color or hue-saturation adjustment we 

make is correct. 

After programming the “Button.cs” script, 

we attached it to all our squares. In these 

squares, script runs on click and in an object 

oriented way transfers data to our 

“GameMaster.cs” script. This script then 

handles all array related operations. 

Score, Move Number and more is stored 

under “GameMaster.cs”. After calculation, 

score is then transferred to “Score.cs” 

where it finally displays the current score. 

After handling turns logic, making buttons 

clickable only once, making opponent 

marked buttons not clickable and fixing 

other non-sensical errors, the game is 

playable on one screen with one mouse for 

two players. 

Multiplayer Development Phase 

 

There are many important variables defined 

on previous versions. These variables need 

to be tracked and synced on multiplayer. 

For transmission to be fast and effective, 

Mirror only supports primitive data types. 

These are strings, chars, integers, floats and 

other similar data types. An integer variable, 

moveNumber can be synced without any 

extra effort using SyncVar decorator. 

Although it is synched, we cant show server 

side changes on the client side. Here is an 

example. 

 



11 
 

 

Data Types And Synchronization 

To accomplish array syncing, we need to 

define its method for Mirror to use. We 

added a new class that inherits one of 

Mirror’s syncable classes. Afterwards, we 

made a struct that holds primitive data 

types. We used a constructor to get our 

previous dataset that uses arrays then set it 

as our new dataset using this struct. We 

then arranged our previous code to use this 

struct. This swap to multiplayer data 

structure cost us valuable time, but thanks 

to the switch our client and server run 

synced. They are not visible currently but it 

is easily fixed by adding scripts client 

specific command decorators and server 

specific remote procedure calls.  

Authentication 

Client →  Server data transferring is not 

possible without an Authenticator. Since 

Mirror only provides us with simplified 

authenticators we moved almost every 

syncable function to server side from client 

side. Every server side function this way 

does not require an authenticator. 

Since we also never allow the client have an 

authenticator, server scripts only run on 

server side, as intended. This also gives us a 

new layer of security.  

By using the Command decorator we let 

clients call server functions. By using the 

ClientRPC decorator we let the server 

update states and run commands on clients. 

This way, both client and server are able to 

see activity on themselves made from the 

other side. Server handled score calculation 

material update, move increases and more, 

therefore we had no issues on 

synchronization. Every client is now able to 

see every effect and SyncVars. 

Before doing this with primitive data types 

but without commands and RPCs, we 

encountered a computer science problem 

called race condition. 

Race Condition 

Race condition occurs when two or more 

processes try to access a shared data and 

the change it. 

This condition in our case is happening 

simply because multiplayer networking. 

Two atomic processes run at the same time 

to be synchronious and desynchronize 

because one side is faster or undergoing 

complex calculations. While this error was 

difficult to identify and fix, Unity3D’s timers 

and Mirror’s Command - RPC system has 

provided us with a massive advantage. Now, 

calling the Update in Fixed times with 

FixedUpdate and then running either 

commands or RPCs fixes this. 

The image below shows serverside effect 

functions running asynchronously on clients. 

Everything other than that like scoreboard 

is correct and still in sync. This proves that 

there was a race condition. 

 



12 
 

 

Right screen as server and left screen as 

client; image provided can clearly show how 

client’s blue table effects are no longer in 

sync because of the race condition. We can 

also see that the score on top is correct and 

synchronous. 

Nagle’s Algorithm 

This algorithm enhances data transmission 

between TCP/IP networks by decreasing the 

amount of packages. Sometimes, objects on 

the same network needs to receive a call 

from the server and since this needs to 

happen at the same time, between ticks, 

there is conflict. This conflict rendered the 

game to be unplayable at a quick pace. 

However this is easily solved by increasing 

the tickrate to almost double of what was 

before and then implementing Nagle’s 

Algorithm to gain some network speed back.  

Beyond Multiplayer 

After answering all immediate networking 

problems, we now need to implement a 

turn mechanism to the game. This means 

we need to wait for the server to play X or 

wait for the client to play O. Since all 

commands already run on the server side 

and especially synchronization is made with 

primitive data types we can introduce a 

variable for this. 

The game can now be player on network 

whether LAN or WAN. WAN needs things 

like port forwarding and a static ip but 

these things are not problems for this thesis 

paper. 

We then added a menu, sound effects, 

music, skoring trackers, tutorials and many 

other small things that make the game a 

game. 

Asset Creation 

We needed visuals and other enhan-

cements to make the game more like a 

game, and we did not want to implement 

unnecessary and non-commercially licensed 

anything from outside. Since we wanted 

some character aswell, we created our own. 

Font 

One of the most important original asset is 

the font. We created the XOOOX font. First 

used Adobe Illustrator to make the letters 

and then used the online tool calligraphr. 

Using this we first made a template then 

added the font file to Unity3D. Here is an 

image for displaying the font. 

 

Music 

Using BoscaCeoil, we created a simple midi 

file. Then using Reaper we recreated a 

similar tone and with Kontakt, orchestrated 

it. We liked how it sounded with classical 

orchestra instruments. Afterwards we ad-

justed these sound files with Audacity and 

gained in tune sound effects and a loopable 

background music. Files were then added to 

Unity3D project folder. 

We have two problems with this. Since the 

game has multiple scenes, our music should 

not restart everytime a scene changes or 



13 
 

 

just stop. It needs to be constant. Using 

Unity3D’s DontDestroyOnLoad method and 

script instancing this is easily handled. 

Other problem is that the game is playable 

online. We don’t want to hear two music on 

top of eachother or other sound effects that 

the other side is hearing. We added an 

instancable audio listener component to all 

network managed player prefabs and these 

are either synced or not managed by our 

AudioManager script. Even though we used 

more than what we needed in terms of 

audio channels, this solved our problem. 

Sound effects being asynchronous is also a 

minor issue. We called these effects from 

our synced GameMaster. This way there is 

an additional check but no players hear 

synced audio twice. 

Singleplayer Gameplay 

Firstly, learning from popular mobile games, 

adding a mock online player is obviously the 

way to go. An artificial intelligence in our 

case that can play a competitive game is 

good enough. Single player happens when 

the hosting server+client hits ready on the 

lobby. GameManager checks if there is one 

client playing, and calls the MiniMax 

Artificial Intelligence to play if the check is 

true. 

MiniMax Algorithm 

Only using the scores and table states has 

zero effect. Usually the table state is fed to 

get the correct assumption from the AI 

upon player movement. AI then decides the 

right move based on some score calculation.  

Since our game does not end with one end 

game score unlike traditional tic-tac-toe, we 

need to optimize and customize the AI. 

There are couple things that the AI should 

know. There are also more optimizations 

available like alpha-beta pruning, 

randomized outputs and more, but our 

project does not need it yet and therefore 

they are not mentioned in this paper. 

Table Optimization Problem 

Firstly we needed a good point system for 

the table. Every tile is not equal and we 

already know this so we can simply feed the 

AI this information. 

To calculate these we firstly gave 1 point to 

every tile. This way common tiles ended up 

becoming 2 pointers while the middle tile 

ended up becoming a 4 pointer. When we 

tested this with Python however, AI did not 

make sensible moves to win or to block us. 

To fix this we are going to give the AI extra 

points for blocking our combo and scoring 

combos. 

Even though it’s movements were sensible, 

it’s moves on board specific tiles seemed 

random. To fix this we needed to change 

the board scores. 

Previously we gave every tile on the board 1 

score. Even though they were not equal, 

their added bonus would help was what we 

thought. Now, we removed it and applied a 

different approach. 

We scored the tiles on a simple question. 

“How many combos can this be a part of?” 



14 
 

 

After answering this, and implementing, on 

a three by three board corner tiles equal 3, 

center tile equal 4 and the rest is 2 points. 

When combined, some are doubled and 

this is even better for us. This removes the 

need to say that some tiles are combo tiles 

to the AI. 

 

This table shows the latest achieved five by 

five matrix. 

Şekilde görülen masa puanlaması en son 

ulaştığımız 5x5 matris değerlerini gösteriyor. 

Bu noktada ise şunu düşünmemiz 

gerekmekte. Kombo yapma veya kombo 

bozma durumunda karelere kaç puan ekstra 

verilmeli? 

Combo Scoring Problem 

These can’t be equals however. MiniMax 

chooses the first best option for it’s current 

iteration. So it would choose the best 

option closest to the button number. We 

also don’t want to combo on the left side 

while the AI combos on the right side. If we 

interrupt it, we would easily win. So this 

proves that our point of not making them 

worth the same point. 

We can’t also just say “Give combo making 

a 10, and interrupting a 20!”. It needs to be 

sensical with the previously made table 

scores. 

To examplify this, let’s say we made a 

combo at the A2 tile. This could let us make 

another combo next turn. Therefore, it’s 

combo value should be equal to B2 or C4. 

Because when you combo, your opponent 

can combo aswell. 2 points is the best 

combo value for this example since it is 

close to the standart derivative of the board. 

If you were to interrup the combo for the 

same tile, you would need to get a score 

higher than 2 but lower than the minimum 

higher number (which is 6). 

𝑇𝑖𝑙𝑒 +  𝐶𝑜𝑚𝑏𝑜 =  𝑃𝑜𝑖𝑛𝑡𝑠 𝐿𝑜𝑠𝑡 

2 +  2 =  𝟒 

𝑀𝑖𝑛(𝐻𝑖𝑔ℎ𝑒𝑟 𝑇𝑖𝑙𝑒 + 3) − 𝐶𝑜𝑚𝑏𝑜

= 𝑃𝑜𝑖𝑛𝑡𝑠 𝐺𝑎𝑖𝑛𝑒𝑑 

𝑋 >  (2 +  3 =  5) −  2 =  𝑋 −  2 

3 is added because it is the interruption bonus. 

𝑋 =  6; 

6 −  2 =  𝟒 

As you can see, both equations equal the 

same number for the most worthless tile. 

This balance is good enough for us.  

Therefore to fix the issue mentioned before, 

we gave scoring a +2 bonus and combo 

interruption a +3 bonus. 



15 
 

 

Emotional Behaviour Problem 

After a while, the AI feels repetitive because 

how MiniMax behaves on equal outcomes. 

It takes the first one, we don’t want to store 

and pick a random one aswell because as 

depth increases, this would ruin the AI’s 

plans. 

We have implemented a random bool value 

that is representing the AI’s anger. Unlike 

traditional tic-tac-toe which ends with one 

score, we can implement this to our game. 

Simply; 

If angry → 2 more points from blocking 

We can also choose to randomize the first 

move of the AI because our table is 

symmetrical. This will also give us more 

replayability but is not needed yet. 

Key Scripts 

This section will provide you with some 

parts from the scripts and explain what they 

do. These are crucial for this project. 

GameMaster.cs 

Now, lets talk about Mirror SyncVars. 

[SyncVar(hook=nameof(RpcMoveAdvance))

] 

    public int MoveNumber = 0; 

This piece of code will keep MoveNumber 

in Sync between all clients, but is not yet 

returned to the clients. That is why SyncVar 

decorator needs a hook. 

[ClientRpc] 

public void RpcMoveAdvance 

(int _oldint, int _newint) 

{ MoveNumber = _newint; } 

This is the hook we mentioned before. As 

you see, it replaces the old integer value 

from clients with the new one from server. 

This is how we track our move count. 

[System.Serializable] 

    public class SyncListTuple : Sync

List<Item> { } 

 

    [System.Serializable] 

    public struct Item { 

        public string a; 

        public string b; 

        public string c; 

    } 

This is how we communicate with the table. 

As you can see, we can’t use arrays but we 

converted them to structs using primitive 

data types. 

SyncListTuple syncRed =  

new SyncListTuple (); 

SyncListTuple syncBlue =  

new SyncListTuple (); 

SyncListTuple syncGreen =  

new SyncListTuple (); 

SyncListTuple syncYellow =  

new SyncListTuple (); 

Every table is created and tracked like this. 

public override void OnStartServer ()

{ base.OnStartServer (); } 

This is how we start the Mirror Server. 

void Awake () { 

if (NetworkServer.connections.Count =

= 1) { 

MiniMax.board = new int[5, 5] { { 0, 

0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0,

 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0

, 0, 0, 0, 0 } }; } } 

This is how we initiate the MiniMax script if 

there are no other clients than us. 



16 
 

 

[ServerCallback] 

public void _beginFill () { 

for (int i = 0; i < Red.Length / 3; i

++) { 

syncRed.Add(new Item(){a=Red[i,0],  

b=Red[i,1],c=Red[i,2]}); 

syncGreen.Add(new Item(){a=Green[i,0]

,b=Green[i,1],c=Green[i,2]}); 

syncYellow.Add(new Item(){a=Yellow[i,

0],b=Yellow[i,1],c=Yellow[i,2]}); 

syncBlue.Add(new Item(){a=Blue[i,0], 

b=Blue[i,1],c=Blue[i,2]}); 

} 

 

syncRed.Add(new Item(){a="red",b="", 

c=""}); 

syncGreen.Add(new Item(){a="green", 

b="",c=""}); 

syncYellow.Add(new Item(){a="yellow",

b="",c=""}); 

syncBlue.Add(new Item(){a="blue",  

b="",c=""}); 

} 

This piece of code here is a good 

demonstration of a code that clients should 

not run. This is achieved with the 

ServerCallback decorator. 

void FixedUpdate () { 

xCount = 0; 

xCount += Check (syncRed, "X"); 

xNumber = ComboCount ("X"); 

} 

This is how we keep track of score. xCount 

is the score, xNumber is the amount of 

scoring tiles.  

This is also a good indicator of how we 

show scripts in this paper. They are not 

whole in this state. We need to check 

syncBlue, syncGreen and syncYellow aswell 

but this is more understandable and easier 

to read. 

Also in FixedUpdate(); 

if( 

NetworkServer.connections.Count==1) { 

if(Moves[MoveNumber] == "O") { 

int hamle = MiniMax.nextTurn (); 

RpcChangeArray (hamle.ToString ()); 

GameObject.Find (hamle.ToString ()). 

GetComponent<Button>(). 

CheckMaterial = 1; 

MoveNumber++; 

} } 

this is called and this is the initiating code 

for the MiniMax. 

[ClientRpc] 

public void RpcChangeArray (string Bu

ttonName) { 

if (Moves[MoveNumber - 1] == "X") { 

GameObject.Find (ButtonName).GetCompo

nent<Renderer> ().sharedMaterial = ma

terialXO[1]; } else { GameObject.Find

 (ButtonName).GetComponent<Renderer> 

().sharedMaterial = materialXO[2]; } 

 

if (isServer) { switch (ButtonName) { 

#region InsertToTables 

#endregion } } } 

This is a good example of how we used 

RPCs. This piece of code will run on all 

clients but not on server. It changes the 

button material to show X and O. 

public class GameMaster :  

NetworkBehaviour { } 

GameMaster is a public class that inherits 

Mirror’s NetworkBehaviour. 

 

 

 

 



17 
 

 

[ClientRpc] 

public void RpcComboGen (string a, st

ring b, string c, int material_) { 

GameObject.Find (a).GetComponent<Rend

erer> ().sharedMaterial = materialXO[

material_]; 

Destroy (Instantiate (ComboParticle, 

GameObject.Find (a).transform.positio

n, GameObject.Find (a).transform.rota

tion), 2f); } 

This is how we generate combo situations 

and change their material. This is called 

from another RPC to change colors and that 

is called from the Check function that runs 

on FixedUpdate. 

public int ComboCount (string Variabl

e) { int temp = 0; for (int i = 0; i 

< 25; i++) { if (GameObject.Find ((i 

+ 1).ToString ()).GetComponent<Render

er> ().sharedMaterial.name == "Combo"

+Variable) { temp++; }} return temp;} 

This is how we calculate scoring tiles. 

[Header("MiniMax AI Specifications")] 

    public int minimaxDepth = 3; 

    public int minimaxBrain = 3; 

We also keep the settings for our MiniMax 

in our GameMaster. Header decorator is for 

Unity3D. 

public string[, ] Green = new string[

9, 3] { { "", "3", "" }, { "", "4", "

" }, { "", "5", "" }, { "", "8", "" }

, { "", "9", "" }, { "", "10", "" }, 

{ "", "13", "" }, { "", "14", "" }, {

 "", "15", "" } }; 

Our old dataset looked like this but now 

they are inserted into the structs shown 

before. 

 

Button.cs 

[SyncVar] 

    public int CheckMaterial = 0; 

Button also has a SyncVar to keep it’s 

material. Material can not be synced 

because it is not a primitive data type but 

an integer can. 

public void ButtonLogic () { 

if (CheckMaterial == 1) { 

return; 

} 

CheckMaterial = 1; 

} 

This is how we use the SyncVar. This 

prevents the players from clicking on top of 

eachother’s tiles. 

CmdClickIncrease (); 

Also in ButtonLogic this is called to increase 

the move number. It runs the following. 

[Command (ignoreAuthority = true)] 

private void CmdClickIncrease () { 

GameMaster.instance.MoveNumber++; 

} 

A command decorator is to make Server run 

commands from clients. Ignore authority 

tag inside is to accept all client side requests. 

It is needed because every player can click 

on an empty tile. 

Destroy ((GameObject) Instantiate (Ga

meMaster.instance.GetParticle (), tra

nsform.position + offset + new Vector

3 (0f, 1f, 0f), transform.rotation), 

2f); 

FindObjectOfType<AudioManager> ().Pla

y ("Move"); 

Still in ButtonLogic this piece of code runs 

on online play and it plays an effect and a 

sound. 



18 
 

 

CmdSendButtonName (); 

This is also called in ButtonLogic and it 

sends the required data to GameMaster to 

proceed with its functions. 

[Command (ignoreAuthority = true)] 

private void CmdSendButtonName () { 

GameMaster.instance.RpcChangeArray   

(this.name); } 

It is used like this. GameMaster then 

changes the arrays and then displays it in a 

synced way. 

MiniMax.Call( 

Convert.ToInt32(this.name)); 

MiniMax is called from the button when the 

button name is needed. 

public class Button :  

NetworkBehaviour { } 

Button is also a public class that inherits 

Mirror’s NetworkBehaviour. 

AudioManager.cs 

Audio Manager is a MonoBehaviour class. It 

also benefits from a sub-class that is called 

Sound.cs. This file has options like file path, 

sound and pitch. 

void Awake() 

{ if(instance == null){instance=this; 

} else { Destroy(gameObject); 

return; } 

 

DontDestroyOnLoad(gameObject); 

         

foreach (Sound s in sounds) { 

s.source = gameObject.AddComponent<Au

dioSource>(); 

s.source.clip = s.clip; 

s.source.volume = s.volume; 

s.source.pitch = s.pitch; 

s.source.loop = s.loop; } } 

This script is the initiation point for our 

AudioManager. This has it’s own empty 

gameObject just like the GameMaster. 

void Start () { Play("Theme"); } 

On start, this will play the theme song for 

our game. 

public void Play (string name) { 

Sound s = Array.Find(sounds, sound =>

sound.name == name); 

if (s == null) { return; } 

s.source.Play(); } 

This is the script that makes our sound 

played. It is really easy to be called aswell.  

FindObjectOfType<AudioManager>().Play

("Move"); 

This is a good example. 

public class AudioManager :  

MonoBehaviour { } 

AudioManager is a public class that inherits 

MonoBehaviour from Unity3D. 

MiniMax.cs 

public static int[, ] board = new int

[5, 5] { { 0, 0, 0, 0, 0 }, { 0, 0, 0

, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0, 0, 

0, 0, 0 }, { 0, 0, 0, 0, 0 } }; 
This is to let the AI know what a board looks like. 

public static int countPoints 

(int value) { 

var score = 0; 

if (GameMaster.instance.minimaxBrain 

>= 1) { 

//Score Declarations 

return score; } 
This is how the AI calculates score. 

 

 



19 
 

 

public static int _MiniMax (int[, ] b

oard, int depth, bool isMaxing) { 

if (depth == GameMaster.instance.mini

maxDepth) { 

return countPoints (1); 

} 

 

if (isMaxing) { var bestScore = -

999999; for (int i = 0; i < 5; i++) { 

for (int j = 0; j < 5; j++) { if (boa

rd[i, j] == 0) { board[i, j] = 1; 

var score = _MiniMax (board, depth + 

1, false); board[i, j] = 0; 

if (score > bestScore) { bestScore = 

score; } } } } return bestScore; 

} else { var bestScore = 999999; 

for (int i = 0; i < 5; i++) { for (in

t j = 0; j < 5; j++) { if (board[i, j

] == 0) { board[i, j] = -1; 

var score = _MiniMax (board, depth + 

1, true); board[i, j] = 0; 

if (score < bestScore) { bestScore = 

score; } } } } return bestScore; } } 
This is how the AI operates. It first checks if it is 

the maxing depth, controls all available fields, 

play to one, calculates score by calling itself 

recursively, removes the play. 

public static int nextTurn () { var b

estScore = -999999; 

int[] bestMove = new int[2]; 

for (int i = 0; i < 5; i++) { for (in

t j = 0; j < 5; j++) { if (board[i, j

] == 0) { board[i, j] = 1; 

var score = _MiniMax (board, 0, false

); board[i, j] = 0; 

if (score > bestScore) { bestScore = 

score; bestMove[0] = i; 

bestMove[1] = j; } } } } 

board[bestMove[0], bestMove[1]] = 1; 

return moveBoard[bestMove[0], 

bestMove[1]]; } 

This is what is called from the GameMaster. 

TableMaterialController.cs 

This is given because it will be a good 

example for the next section. 

using UnityEngine; 

 

public class TableMaterialController:

MonoBehaviour { 

public Material eggMaterial; 

private void Awake () { 

if (PlayerPrefs.GetInt("Egg",1)==0) { 

this.GetComponent<Renderer> ().shared

Material = eggMaterial; } } } 

This calls a PlayerPref then changes the 

material for the tiles if needed. 

PlayerPrefs And Other 

PlayerPrefs are used in two instances. One 

is used for the Mute-Unmute button for the 

music, the other is used for the table 

materials. 

 

PlayerPrefs are Unity3D’s save methods. 

Our game states can also be saved like this 

but since there is no way to give the same 

numbers to every network identity, it is 

impossible for us to currently save the game.



20 
 

 

Flow Diagrams 

This section shows how some things work graphically. 

 

 

 

 



21 
 

 

 

 

 

 



22 
 

 

 

 

 

 

 



23 
 

 

License 

MIT License 
 
Copyright (c) 2020 Ozgur Ozbek  
Copyright (c) 2020 Atilla Coruhlu 
 
Permission is hereby granted, free of charge, to any person obtaining a copy of this software 
and associated documentation files (the "Software"), to deal in the Software without restriction, 
including without limitation the rights to use, copy, modify, merge, publish, distribute, 
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is 
furnished to do so, subject to the following conditions: 
 
The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software. 
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE AND NONINFRINGE-MENT. IN NO EVENT SHALL THE AUTHORS OR 
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN 
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24 
 

 

Bibliography 

This is what we used to get references for Unity3D and read the documentation. 

1. https://docs.unity3d.com/Manual/ 

This is the Mirror documentation. 

2. https://mirror-networking.com/docs/ 

This is how we setup the starting code for MiniMax. 

3. https://en.wikipedia.org/wiki/Minimax 

4. https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/ 

5. https://www.youtube.com/channel/UCvjgXvBlbQiydffZU7m1_aw 

This was needed for some problem solving in regards to LWRP. 

6. https://www.youtube.com/user/Brackeys 

This was needed for Mirror and understanding Mirror’s structure. 

7. https://www.youtube.com/c/FatDino 

8. https://www.youtube.com/channel/UCGIF1XekJqHYIafvE7l0c2A 

This is where we derived our main game logic from. 

9. https://en.wikipedia.org/wiki/Tic-tac-toe 

This is the C# documentation. 

10. https://docs.microsoft.com/tr-tr/dotnet/csharp/ 

This is the LWRP documentation. 

11. https://docs.unity3d.com/Packages/com.unity.render-

pipelines.lightweight@5.10/manual/index.html 

Articles about MiniMax that we gained an understanding from. 

12. KAAN GÖKCESU(2017), Online minimax optimal density estimation and anomaly detection 

in nonstationary environments 

13. AMIN FARIDYAHYAEI(2017), A multi-level continuous minimax location problem with 

regional demand 

14. Dzhafarov Vakif, Karamançıoğlu A, Çetintaş S (1997),Minimax optimal control for one class 

of uncertain systems 

 

 

https://docs.unity3d.com/Manual/
https://mirror-networking.com/docs/
https://en.wikipedia.org/wiki/Minimax
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/
https://www.youtube.com/channel/UCvjgXvBlbQiydffZU7m1_aw
https://www.youtube.com/user/Brackeys
https://www.youtube.com/channel/UCGIF1XekJqHYIafvE7l0c2A
https://en.wikipedia.org/wiki/Tic-tac-toe
https://docs.microsoft.com/tr-tr/dotnet/csharp/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.lightweight@5.10/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.lightweight@5.10/manual/index.html


25 
 

 

This is what we used to better integrate the MiniMax algorithm to our game AI. 

15. https://www.gamebusiness.jp/article/2019/07/09/15947.html 

These are the music related information tabs. 

16. https://www.reaper.fm/userguide.php 

17. https://www.native-

instruments.com/fileadmin/ni_media/downloads/manuals/kontakt/KONTAKT_6.4_Manual

_26_08_2020_ENGLISH.pdf 

This is the explanation that helped us solve our own race condition problem. 

18. https://www.baeldung.com/cs/race-conditions 

This is the implemented Nagle’s algorithm. 

19. https://en.wikipedia.org/wiki/Nagle%27s_algorithm 

Nagle’s Article on TCP/IP Internetworks 

20. https://tools.ietf.org/html/rfc896 

This is the font template website. 

21. https://www.calligraphr.com/en/ 

This web application was used to create flowcharts. 

22. https://app.diagrams.net/

 

https://www.gamebusiness.jp/article/2019/07/09/15947.html
https://www.reaper.fm/userguide.php
https://www.native-instruments.com/fileadmin/ni_media/downloads/manuals/kontakt/KONTAKT_6.4_Manual_26_08_2020_ENGLISH.pdf
https://www.native-instruments.com/fileadmin/ni_media/downloads/manuals/kontakt/KONTAKT_6.4_Manual_26_08_2020_ENGLISH.pdf
https://www.native-instruments.com/fileadmin/ni_media/downloads/manuals/kontakt/KONTAKT_6.4_Manual_26_08_2020_ENGLISH.pdf
https://www.baeldung.com/cs/race-conditions
https://en.wikipedia.org/wiki/Nagle%27s_algorithm
https://tools.ietf.org/html/rfc896
https://www.calligraphr.com/en/
https://app.diagrams.net/

